(2x^2+7)/3=26

Simple and best practice solution for (2x^2+7)/3=26 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2+7)/3=26 equation:



(2x^2+7)/3=26
We move all terms to the left:
(2x^2+7)/3-(26)=0
We multiply all the terms by the denominator
(2x^2+7)-26*3=0
We add all the numbers together, and all the variables
(2x^2+7)-78=0
We get rid of parentheses
2x^2+7-78=0
We add all the numbers together, and all the variables
2x^2-71=0
a = 2; b = 0; c = -71;
Δ = b2-4ac
Δ = 02-4·2·(-71)
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{142}}{2*2}=\frac{0-2\sqrt{142}}{4} =-\frac{2\sqrt{142}}{4} =-\frac{\sqrt{142}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{142}}{2*2}=\frac{0+2\sqrt{142}}{4} =\frac{2\sqrt{142}}{4} =\frac{\sqrt{142}}{2} $

See similar equations:

| 2x+41=941 | | -4(x+6)=9x+2 | | 2x+2=729 | | 205=-u+51 | | 482+a=994 | | 7b+6=97+ | | -3(n=4)=12 | | z-2=3(14+3z)-12 | | 8x-16-3x-3x=9x+19 | | -4(n+4)=12 | | 8(x-2)-3(1-x)=9(x=2)+1 | | 5(n-10)=5 | | y=-6(-3)-21 | | 14b-5=12b+8 | | -8x-24x-84=12 | | X+(.20x)=7000 | | -8x+4(-6x-21)=12 | | -8x=4(-6x-21)=12 | | 1/5(20-5x)=-2(-2-x)=3 | | 8x-2(8x-20)=24 | | 12+3d=48 | | (15x-12)+(5x-18)=190 | | 5x-3x+25/7=7 | | 5a-7a+3a-2=8 | | 4x+7=5x=11 | | 3t+5t-6=2t-12 | | 10x-35=9x+4 | | x+1+x+1+x+1=66 | | 0.5x+20+x=50 | | 256^x-16^3x=-3 | | k-3/7k=6/7 | | 4x14=4x+24 |

Equations solver categories